

15MATDIP31

(05 Marks)

USN

Third Semester B.E. Degree Examination, July/August 2022 **Additional Mathematics - I**

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1 a. Express
$$\frac{(2-3i)(2+i)^2}{1+i}$$
 in the form of $x + iy$. (06 Marks)

b. If $x + \frac{1}{1} = 2 \cos \alpha$ then prove that $x^n + \frac{1}{1} = 2 \cos n\alpha$ (05 Marks)

b. If
$$x + \frac{1}{x} = 2 \cos \alpha$$
 then prove that $x^n + \frac{1}{x^n} = 2 \cos n\alpha$. (05 Marks)

c. Find the cosine of the angle between the vectors $\vec{a} = 5 \,\hat{i} - \hat{j} + \hat{k}$ and $\vec{b} = 2 \,\hat{i} - 3 \,\hat{j} + 6 \,\hat{k}$. (05 Marks)

2 a. Find the Fourth roots of 1 -
$$i\sqrt{3}$$
 and represent them on an Argand plane. (06 Marks)

b. Show that the vectors
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + 4\hat{j} - \hat{k}$ are co-planar.

c. Prove that
$$[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}].$$
 (05 Marks)

3 a. Obtain the nth derivative of
$$e^{ax} \cos(bx + c)$$
. (06 Marks)

b. Show that the curves
$$r = a(1 + \cos\theta)$$
 and $r = a(1 - \cos\theta)$ are orthogonal. (05 Marks)

c. If
$$u = x(1-y)$$
, $v = xy$ find the Jacobians $J = \frac{\partial(u,v)}{\partial(x,y)}$ and $J' = \frac{\partial(x,y)}{\partial(u,v)}$. (05 Marks)

4 a. If
$$y = a \cos(\log x) + b \sin(\log x)$$
, prove that $x^2 y_{n+2} + (2n+1) x y_{n+1} + (n^2+1) y_n = 0$.

(06 Marks)

b. If
$$u = \sin^{-1}\left(\frac{x^3 - y^3}{x - y}\right)$$
, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2$ Tan u. (05 Marks)

c. If
$$z = xy^2 + x^2y$$
, where $x = at^2$, $y = 2at$. Find $\frac{dz}{dt}$. (05 Marks)

Module-3

5 a. Evaluate
$$\int_0^{\pi} x \sin^6 x \, dx$$
. (06 Marks)

b. Evaluate
$$\int_{0}^{1} \int_{0}^{1} \frac{dxdy}{\sqrt{(1-x^2)(1-y^2)}}$$
. (05 Marks)

c. Evaluate
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x + y + z) dx dy dz$$
. (05 Marks)

CENTRA

OR

a. Evaluate $\int_{1}^{1} x^{5} (1-x^{2})^{\frac{5}{2}} x. dx$. (06 Marks)

- b. Evaluate $\int_{0}^{2a} \int_{0}^{\frac{x^{-}}{4a}} xy \, dy \, dx$. (05 Marks)
- c. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{y} xyz dx dy dz$. (05 Marks)

- $\frac{\text{Module-4}}{\vec{r}=2t^2\ \hat{i}+(t^2-4t)\hat{j}+(3t-5)\hat{k}} \ . \ \text{Find the components of}$ 7 velocity and acceleration at t = 2. (06 Marks)
 - Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along $\vec{a} = 2\hat{i} \hat{j} 2\hat{k}$.
 - (05 Marks) Find div \vec{f} for $\vec{f} = \nabla (x^3 + y^3 + z^3 - 3xyz)$. (05 Marks)

- Find the unit tangent vector to the curve $\vec{r} = t^2 \hat{i} + 2t \hat{j} t^3 \hat{k}$ at $t = \pm 1$. 8 (06 Marks)
 - Find the unit normal vector to the surface xy + yz + zx = c at the point (-1, 2, 3). (05 Marks)
 - Show that $\vec{f} = (z + \sin y) \hat{i} + (x \cos y z) \hat{j} + (x-y) \hat{k}$ is irrotational. (05 Marks)

Module-5

9 a. Solve
$$\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right)$$
. (06 Marks)

- b. Solve $\frac{dy}{dx} + y \cot x = \sin x$. (05 Marks)
- c. Solve $(x^2 + y) dx + (y^3 + x) dy = 0$. (05 Marks)

OR

10 a. Solve
$$\frac{dy}{dx} = (4x + y + 1)^2$$
. (06 Marks)

b. Solve
$$\frac{dy}{dx} + \frac{2}{x}y = \frac{3x^2 + 1}{x^2}$$
. (05 Marks)

c. Solve
$$[y(1+\frac{1}{x}) + \cos y] dx + (x + \log x - x \sin y) dy = 0.$$
 (05 Marks)